THE RELATIONSHIP BETWEEN LEARNING AND MEMORY

Tanzania Institute of Education(1999) Memory is the complex mental function of recalling what has been learned or experienced, it is the retention of information overtime and memories exist in the brain
Memory is the ability to remember past experiences or learned information, involving advanced mental processes such as learning, retention, recall, and recognition and resulting from chemical changes between neurons in several different areas of the brain, including the hippocampus. Immediate memory lasts for just a few seconds. Short-term memory stores information that has been minimally processed and is available only for a few minutes, as in remembering a phone number just long enough to use it. Short-term memory is transferred into long-term memory, which can last for many years, only when repeated use of the information facilitates neurochemical changes that allow it to be retained. The loss of memory because of disease or injury is called amnesia. The American Heritage® Science Dictionary Copyright © 2005 by Houghton Mifflin Company. Published by Houghton Mifflin Company.
        In psychologymemory is the process in which information is encoded, stored, and retrieved. Encoding allows information that is from the outside world to reach our senses in the forms of chemical and physical stimuli. In this first stage we must change the information so that we may put the memory into the encoding process. Storage is the second memory stage or process. This entails that we maintain information over periods of time.
                 Finally the third process is the retrieval of information that we have stored. We must locate it and return it to our consciousness. Some retrieval attempts may be effortless due to the type of information.
From an information processing perspective there are three main stages in the formation and retrieval of memory:
·         Encoding or registration: receiving, processing and combining of received information
·         Storage: creation of a permanent record of the encoded information
·         Retrieval, recall or recollection: calling back the stored information in response to some cue for use in a process or activity
The loss of memory is described as forgetfulness, or as a medical disorder, amnesia.
THE RELATIONSHIP BETWEEN LEARNING AND MEMORY
While memory cannot occur without learning, once information has been learned, our memory may allow the learning to decay. Occasionally, memory will unintentionally play a bit loose with the truth regarding what was previously learned.
is one who cannot learn and will not remember content information well during assessment. Emotions can be a catalyst or an impediment to learning. It has been estimated that 95% of our reactions are unconsciously driven by the amygdala and only modestly impacted by the executive centers of the cerebral cortex. Although ours is generally considered a rational brain, it is an emotional brain, where feelings receive first priority. A student who is upset
In school, mere exposure to content information (lecture, text, etc.) is no guarantee that it will reach the personal/emotional threshold of “personal importance” to the learner, where encoding the information for permanent memory storage is deemed warranted. What students encode depends on what they are paying attention to at the time. Although we often wonder why our students forget important lesson content, the bigger problem is, Was it ever encode for memory?

An important distinction has to be made between listening and remembering. Teachers often feel obligated to clarify what indeed is important, at least for testing purposes, because students cannot “essentialize” (a term coined by Dr. Robert Grant), separating the crucial from the tangential.
Several connected brain regions play key roles in memory formation, including the thalamus, amygdala, hippocampus and cerebral cortex. It is the interaction of nearly all parts of the brain that allows for the construction of our memories.
The amygdala and the hippocampus are vital to learning in the classroom:
1. The stronger the emotions connected to an experience, the stronger the subsequent memory.
2. The neural networks most important emotionally to a student are bathed with neuro-nutrients, enhancing memory formation and retention.
3. Learning experiences become more memorable when social-emotional memories are part of the learning event, which is why cooperative learning is such a powerful memory-enhancer in schools.
The hippocampus plays a crucial role in forming and storing our memories of facts and events. Initially, short-term memories are briefly stored in the hippocampus, prior to being transferred to other brain regions where they are consolidated with prior knowledge into long-term memories. While persistent stress can damage hippocampal brain cells, patterns, emotions, relevance, context, content and sense-making boost attention, memory formation and recall. Collectively, they can determine what information reaches permanent memory storage. As Stanford Ericksen summarized the requisite emotional element in learning, “Students learn what they care about and remember what they understand.”
When information is determined to have potential long-term value, the hippocampus links the significant elements of that event or experience together, forming a permanent memory. Creating, storing, retrieving and using our spatial memories and episodic memories are characteristic brain capacities made possible by the hippocampus. When we daydream, the hippocampus is strikingly active. Brain-imaging studies have shown heightened activations in the hippocampus not only when we are recalling memories but also when we put the mind on “wander and wonder.” This has important implications concerning creativity and innovation, which are based on our ability to manipulate and expand on stored factual information.
Upon hearing a new girlfriend’s birthday, that information enters her companion’s short-term memory. As the relationship progresses, this short-term memory is converted into permanent memory through the process of consolidation. Emotional memories are among our strongest and easiest to recall—an A on a final exam, our high school and college graduation ceremonies, our senior prom date, etc. As a result, neurodegenerative diseases including Alzheimer’s are extremely terrifying, since the disease causes us to forget critical information identifying who we are, who we love and who loves us most—our emotional connections.
When a noteworthy personal date is shared with a loved one—e.g., an anniversary—that random day is tagged in the vast chronological time scale and is emotionally coded, making it a prime candidate for permanent memory storage. Those dates of significance require regular attention, mental rehearsals and reinforcement to maintain our ability to recall them effortlessly. Classical conditioning would suggest that a secondary motivation exists—punishment associated with any tendency to forget those dates—which increases the probability that they will enjoy flawless recollection.
Information that cannot be successfully stored by the hippocampus cannot be remembered or subsequently retrieved. Due to the manner by which elements that compose a memory get distributed throughout the cortex, long-term memories are generally stored safely. Damage to the hippocampus renders the formation of new memories virtually impossible.
Emotional experiences (both positive and negative) enjoy the highest probability of reaching permanent memory storage. It is the amygdala-hippocampus connection that fosters the development of our most memorable moments in life. In the classroom, emotions determine what students pay attention to, which impacts what students will later remember.
MEMORY STRATEGIES
The complex human brain has an extensive repertoire of different types of memory strategies that are deployable for varying lengths of time on special occasions with distinctly different purposes and outcomes driven by multiple memory systems. (See “Types of Memory.”)
If new connections are not strengthened by active usage, they soon disintegrate. The more frequently a given network of neurons fires together, the greater is the likelihood that they will hardwire together permanently, increasing the likelihood that they will fire in unison in the future, according to Donald Hebb, the father of cognitive neuroscience. But it can take as many as six exposures before new information enters into permanent memory.
- See more at: http://brainworldmagazine.com/learning-memory-how-do-we-remember-and-why-do-we-often-forget/#sthash.Njt28kQU.dpuf